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An Efficient Method for Calculating Surface Temperature 
and Heat Flux Based on Embedded Temperature Sensors 

(Preprint) 

Edward B. Coy1

Air Force Research Laboratory, Edwards AFB, CA, 93524 

Approximate analytical solutions have been obtained for surface temperature and heat 
flux for the case of two embedded temperature sensors.  The solutions have been verified 
and the range of validity has been established using several methods including comparisons 
with an exact analytical solution for a linear problem and numerical calculations for a non-
linear problem.  The performance of the model is presented in both the frequency domain 
and the time domain.  A propagation of error analysis is presented and is used to establish 
the optimum spacing between the sensors.  The solutions place no restrictions on the 
boundary or initial conditions and rely only on current values of temperature and its rate of 
change.  The temperature dependence of transport properties is accounted for in an 
approximate way.  The method requires minimal computation and is suitable for 
implementation as a real-time sensor. 

Nomenclature 
Fo = Fourier number, 2xtα  
k = Thermal conductivity 
Ti = Temperature 

iT&  = Rate of change of temperature 
t = Time 
q = Heat Flux 
xi = Distance from heat flux surface 
αi = Thermal diffusivity 
φ = Phase Angle 
ω = Angular frequency 

I. Introduction 
He measurement of transient heat flux and surface temperature in heat-sink combustion chambers continues to 
present technical challenges to the instrumentation engineer.  Sensor failure rates are high and measurement 

accuracies and uncertainties are not well characterized.  These shortcomings have had a significant impact on some 
recent programs which have used heat sink test articles to acquire data for the validation of heat transfer predictions 
at liquid rocket engine operating conditions1,2. 

T 
There are numerous types of heat flux sensors but a relatively small subset is capable of operating in rocket 

chamber conditions where heat flux levels can exceed 108 W/m2 and surface temperatures of 1000 K are typical. 
Diller3 reviewed the devices that have been used and organized them into methods that rely on temperature 
differences over a spatial distance with known thermal resistance and temperature differences over time with known 
thermal capacitance.   The most commonly used method has been the coaxial thermocouple which is an example of 
the second type.  A thermocouple junction is formed on the surface of the chamber between a wire of one type of 
thermocouple material and a surrounding sheath of another type.  The heat flux is determined from the measured 
temperature boundary condition using a one-dimensional transient solution to the heat equation.  The junction is 
typically very thin and is often formed by lightly scratching the surface to drag filaments of one type of material 
                                                           
1 Propulsion Research Engineer, Aerophysics Branch, Space and Missiles Propulsion Division, Propulsion 
Directorate, 10 East Saturn Blvd. 
Distribution A: Approved for public release; distribution unlimited. 
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across the electrically insulating layer to the other type.  In some applications, when erosion of the surface occurs the 
junction is continuously reformed and this has led to the description of coaxial thermocouples as “eroding 
thermocouples.”  However, in heat-sink chambers it is quite common to find that the junction disappears at some 
point during a test and the sensor fails. 

Other methods have been developed which do not rely on surface temperature measurements but embed the 
sensors within the wall where they are protected from erosion.  In the null-point calorimeter a hole is drilled from 
the backside of the chamber wall and a thermocouple is inserted.  The bead is brazed or resistance welded to the 
bottom of the hole.  “Null-point” refers to a distance from the bottom of the hole to the inner wall where the 
disturbance to the flow of heat caused by the hole results in the junction reading nearly equal to the inner wall 
temperature.  The construction of null-point calorimeters is challenging.  The junction cannot be visually inspected 
and large measurement errors can result from manufacturing flaws4. 

Another method using embedded temperature sensors is the plug-type heat flux gauge of Liebert5.   An annular 
groove is machined into the chamber wall to form a post and thermocouples are attached at several axial points 
along the outside of the post.  A polynomial curve is used to extrapolate the temperatures to the wall position and an 
integral method is used to calculate the total heat load to the plug from transient temperature measurements.  Two-
dimensional effects can be significant in this type of device.  The dimensions of the groove are critical and 
significant errors can result from the disturbance to the flow of heat6. 

 

II. Derivation of Model 
 
In the following analysis we adopt the approach of Liebert5 of extrapolating a polynomial to the surface.  The 

temperature profile in the body (see figure 1.) is approximated using a power series in x with time dependent 
coefficients. 
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However, in addition to matching the temperatures at the measurement points, the polynomial is also required to 
match the second derivatives with respect to x.  These values are obtained from the time derivatives of temperature, 
which are assumed to be available as experimental measurements, and the heat equation. 
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Adding these additional constraints allows a higher order polynomial to be used and markedly improves the time 
response of the sensor.  Explicit expressions for the can be obtained by substituting (1) into the right side of  

(2) then solving for the  in terms of the measured temperatures and their rates of change.  For two 
measurement points there will be four measured quantities and the power series can be carried to the fourth term.  If 
second derivatives are available, the series can be carried to the sixth term and so on.   

)(tci
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Figure 1 Heat flux sensor geometry 
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Evaluating the series at the surface, x=0, and combining terms in order to make the linear dependence on the 
measurements apparent, the temperature and heat flux expressions can be written as follows, 
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In deriving these solutions, no assumptions have been made with respect to the boundary conditions at the top of 

the block and in fact it is completely arbitrary.  For example, the top surface could be actively cooled.  Also the 
second sensor at x2 does not need to be embedded within the block and can be located at the top surface.  The sensor 
at x1 may be located at the x=0 surface.  Furthermore, we have made no assumptions with respect to the origin of 
time.  The solution relies only on the current values of temperature and rates of change of temperature.  Referring 
back to the categorizations of methods defined by Diller3, this method is a hybrid of the two types as it relies on both 
spatial and temporal variations in temperature. 

The method used to evaluate the rate of change of temperature is critical to the success of the technique.  A 
simple finite difference calculation will almost certainly result in an unacceptable level of noise in the derivative.  A 
polynomial smoothing filter, also known as a Savitzky-Golay7,8 filter, can be effective in reducing noise and can be 
calculated very efficiently.  The filter is implemented as a convolution in the time domain. 
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Substituting (5) and (6) into (3) and (4) we arrive at the final forms for the surface temperature and heat flux 

expressions.   
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The coefficients are defined as follows.  
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Note that once the coefficients have been calculated, only 4m+2 multiplications and 2m+1 additions are required 

to evaluate  and , or about 100 processor operations are required for a typical value for m of 10. 0T 0q
The uncertainties 0Tδ  and 0qδ can be evaluated by treating each temperature measurement as an independent 

random variable and using the “square root of the sum of squares” approach.  We also assume that uncertainties in 
thermocouple locations and material properties are negligible. 
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Minimum values of  0Tδ  and 0qδ can be achieved by making an optimum choice for the order of the polynomial 

used to obtain the and .  For a fixed level of uncertainty in the measurements, the coefficients of a high order 
method will result in a larger value for the total uncertainty; however, in the presence of high frequency content, a 
high order polynomial will fit the trend more closely and reduce the values of 

ia ib

nTδ , thereby reducing the total 
uncertainty.  The optimum order can be found by increasing the order until a minimum in the uncertainty is found.  
However this increases the amount of computation and in practice we find that the quadratic smoothing filter is a 
good compromise and can be used as the default method.  The coefficients for the quadratic smoothing filter are the 
following. 
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III. Verification of Model 
 
To illustrate the behavior of the approximate solutions, we make comparisons with the exact solution for the 

temperature within a semi-infinite slab exposed to an oscillating heat flux at the surface.   
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When (18) and its time derivative are substituted into (3) and (4) the results are linear combinations of sine and 

cosine terms of the form:    
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The four terms can be combined into a single term of the following form.  
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The amplitude and phase behaviors are shown in figures 2 and 3.  For greater generality, the results are plotted as 

functions of two non-dimensional numbers.  The x-axis is a non-dimensional angular frequency which is the 
reciprocal of a Fourier number based on the angular frequency of the heat flux and the distance from the surface to 
the first sensor, , and the individual curves are for various values of the ratio xαω /2

1
1 xFo =−

2/x1.  These two 
variables completely determine the solutions. Considering the surface temperature first, we see immediately that the 
solution has the characteristics of a low pass filter but with a region of positive gain in the range of angular 
frequencies from 1 to 20.  We also see that the magnitude of the gain increases with the ratio x2/x1.  The phase of the 
solution begins to lag at angular frequencies above 1 except for x2/x1=4 where there is a range from 0.4-4 where the 
phase angle is positive. 

The behavior of the solution for heat flux is given in figure 3 and is substantially similar.  In this case, the peak 
in the gain increases with x2/x1 but is significantly lower than the peak in the surface temperature gain.  In fact, for 
heat flux, the gain behavior is quite a weak function of x2/x1 over the range from 1.5-4.  The phase behavior is also a 
weak function of x2/x1 with all values showing a roll off beginning near an angular frequency of 0.5. 

In addition to correctly reproducing the amplitude and phase of a heat flux signal, the model must also be robust 
in the presence of noise.  We now consider the effect of the parameter x2/x1 on the propagation of error from noise in 
the temperature measurements.  Equations (13) and (14) are expressions for the uncertainties in surface temperature 
and heat flux when the smoothing filter approach has been used.  An alternative approach for deriving these 
expressions is to start with (3) and (4) and assume that the uncertainties in temperature and rate of change of 
temperature are known quantities.  This approach yields succinct expressions that reveal the role of x2/x1.  We 
assume the error in each measurement is independent and the thermocouple positions and material properties are 
error free. The sensitivity coefficients are simply the coefficients in (3) and (4).  If we assume ,  
and 

21 TT δδ ≈ 21 TT && δδ ≈

21 αα ≈ , the uncertainty of the surface temperature is, 
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The uncertainty for the heat flux is, 
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Figure 2 Surface temperature gain and phase 

 
Equations (21) and (22) show that uncertainty is a function of the positions of the sensors, and therefore we can 

anticipate that there will be optimum locations that minimize uncertainty.  To make quantitative predictions we need 
estimates for Tδ  and  and these were obtained from experimental data that will be presented later.  The specific 
values used here were 

T&δ
Tδ  =1 K and = 20 K/s.  Figure 4 shows the uncertainty in surface temperature based on 

(21) and in fact it has a minimum at x
T&δ
2/x1=3.6, but the minimum is quite broad and any value from 2.3 to 5 would 

work as well. This region corresponds well to the region of maximum accuracy identified previously.  However, the 
uncertainty increases rapidly for x2/x1<2 so this range should be avoided.  The minimum in the heat flux uncertainty 
(Figure 5) based on (22) is somewhat sharper with the optimum value 2.3.  The heat flux uncertainty has been 
normalized by the magnitude of the heat flux so it can be seen that the minimum in the uncertainty is approximately 
0.75% of the measured value.  Again, values of x2/x1<2 should be avoided.  Based on these uncertainty estimates 
plus the gain and phase results described above, the optimum value for x2/x1 is 2.3-2.5. 
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Figure 3 Heat flux gain and phase 
 

IV. Temperature Dependent Properties 
If thermal properties are temperature dependent the heat equation is non-linear and analytical solutions such as 

(18) are not possible.  For this case the model was verified and validated using numerical results.  We chose as a test 
case an idealized version of the typical test conditions we see in our laboratory: a step change in heat flux from 0-
4x107 W/m2.  The MatLab non-linear PDE solver, pdepe was used to generate temperature histories for the surface 
and internal points and these were converted back to heat flux and surface temperature using the model.  Two cases 
of x2/x1 are shown.  For both cases the sensor nearest the surface is located at a depth of 1.905 mm (0.075 inch).  The 
total thickness of the slab was 41.91 mm (1.65 inch) and the material was high-conductivity copper.  The heat flow 
was assumed to be one-dimensional.  The grid contained 131 evenly spaced points and the temperatures were saved 
at one millisecond intervals.  Results using a 261 point grid differed by approximately 0.1 K and did not change the 
model results. 

The ability of the model to reproduce the surface temperature and heat flux boundary conditions is shown in 
figure 6.  For both cases of x2/x1, after 0.1 seconds the polynomial model has converged to within 0.1 K for the 
surface temperature and within 1% of the heat flux, but the magnitude of the overshoot is significantly smaller for 
x2/x1=2.3 than 3 as we should expect from the gain plots presented earlier. 
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Figure 4 Temperature Uncertainty 
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Figure 5 Heat Flux Uncertainty 

 

V. An Application of the Model 
To illustrate the application of the model we present data taken in a sub-scale, heat-sink, rocket combustion 

chamber.  Type K thermocouples were embedded in a high conductivity copper block that formed one side of a 2.54 
cm square channel.  The locations of the sensors were those given above in the description of the temperature-
dependent properties calculation.  The reactants were gaseous hydrogen and gaseous oxygen at a mass flow rate 
ratio of 1:5.5.  The propellants were completely mixed and reacted at the measurement location.  The pressure of the 
chamber was 42 bar (600 psig) and the mean velocity of the gas was approximately 250 m/s (820 ft/s).  In figure 7 
the upper figure shows the temperatures measured within the block labeled as “Front Side” for x1 and “Backside” 
for x2.  Also shown are results for surface temperature based on (3) and uncertainty based on (13) which is read on 
the right-side vertical axis. The reference in the legend to Tsurf3 and T3 refers to the data from the third of six 
measurement positions. In this example, which used an early version of the technique, the uncertainties of the 
temperatures and rates of change of temperature were obtained from the uncertainties in linear regression parameters 
over a data window 60 milliseconds wide and containing 61 measurements.  This is equivalent to a polynomial 
smoothing filter based on a linear function in distinction to the quadratic filter recommended above and given in 
(15) and (16).  The uncertainties increase in the regions where the rates of change of temperature are not constant as 
occurs at the beginning and end of the test and are largely due to the fact that the linear regression was used. The 
uncertainties propagate to the surface temperature calculation resulting in the spikes at 1.6 and 2.2 seconds.  The 
heat flux results are shown in the lower figure.  The maximum value reached was 2.46x107 W/m2 (15.0 Btu/in2/s).  
The uncertainty in heat flux due to noise during the middle of the run is approximately 0.5% of the measured value. 
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Figure 6a  Effect of temperature dependent properties on surface temperature prediction.  
Test case is step change in heat flux from 0 to 4e7 W/m2 (24.5 Btu/in2/s).  
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Figure 6b  Effect of temperature dependent properties on accuracy of heat flux.  Test case 
is a step change in heat flux from 0-4e7 W/m2 (24.5 Btu/in2/s).  Heat flux converges to 
within 1% after 0.1 seconds. 

 

VI. Conclusion 
A method has been described for measuring surface temperature and heat flux based on two temperature sensors 

embedded in the wall of a chamber.  The method does not require surface junction thermocouples which are prone 
to failure and produce noisy signals in rocket engine flows and is well suited for studies of the effects of surface 
features on heat transfer enhancement.  A polynomial extrapolation approach is used where the function is 
constrained to match the temperatures and the second derivatives with respect to distance at the measurement points.  
The method requires only current values of temperature and its rate of change and the boundary and initial 
conditions are arbitrary.  The algorithm can be represented as a low pass filter and the gain and phase behavior have 
been characterized.  The placement of the sensors affects the frequency cutoff and the noise response and optimum 
values for the relative positions of the sensors have been obtained.  The method utilizes time derivatives of 
temperature data which can be efficiently calculated using a polynomial smoothing filter. The method is 
computationally efficient, requiring approximately 100 multiply and add operations and is suitable for 
implementation in a digital signal processor. 
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Figure 7 Surface temperature and heat flux from experimental data obtained in a subscale 
rocket combustion chamber 
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